Été 2019

On s'efforcera de ré et notamment d'apporter le

Exercice 1

- 1. On s'intéresse à la proposition (autrement dit à l'affirmation mathématique) suivante :
 - « Pour qu'un réel soit racine du polynôme $3x^2 7x 10$, il faut qu'il soit égal à -1. »
 - a. Reformuler cela en recopiant et en complétant ce qui suit (ne pas se fier aux dimensions des espaces): « Soit x un réel quelconque. On a l'implication : = entraîne »
 - **b.** Est-elle vraie?
 - c. Justifier votre réponse.
- 2. On considère maintenant la proposition :
 - « Pour qu'un réel soit racine du polynôme $3x^2 7x 10$, il suffit qu'il vaille -1. »
 - a. Est-elle vraie? (Justifier)
 - **b.** Reformuler (cette proposition) sur le modèle de 1.a.
- **3.a.** Reformuler la proposition suivante sur le modèle de 1.a. « Soit α un réel quelconque. Si α est racine du polynôme $3x^2 - 7x - 10$, alors on a $\alpha = -1$. »
 - **b.** Est-ce vrai? (Justifier)
- 4.a. Reformuler la proposition ci-dessous sur le modèle de 1.a.
 - « Pour qu'un réel soit solution de l'équation $-3x^2 2x + 4 = 0$, il faut qu'il soit strictement plus grand que 1024 ou qu'il appartienne à l'intervalle $\left[-\frac{1+\sqrt{13}}{3},\frac{-1+\sqrt{13}}{3}\right]$. »
 - **b.** Est-elle vraie? (Justifier)
- 5. On considère la proposition
 - « Soit a un nombre réel quelconque. Le polynôme $ax^2 + 2x 1$ possède une unique racine réelle si et seulement si a = -1. »

Remarques.

- Cette proposition a le même sens que la proposition suivante :
- « Soit a un nombre réel quelconque. Dire que le polynôme $ax^2 + 2x 1$ possède une unique racine réelle revient à dire que a = -1. »
- La signification est également la même que lorsque l'on écrit :
- « Soit a un nombre réel quelconque. Nous avons :
- si le polynôme $ax^2 + 2x 1$ possède une unique racine réelle, alors a = -1, et si a = -1, alors le polynôme $ax^2 + 2x 1$ possède une unique racine réelle. »

La proposition en question est-elle vraie? (Justifier)

Exercice 2 On rappelle que \mathbb{N} désigne l'ensemble des entiers naturels, \mathbb{Z} l'ensemble des entiers relatifs (c'est-à-dire l'ensemble des entiers positifs, négatifs ou nuls), et \mathbb{R} l'ensemble des nombres réels.

Préciser, pour chacune des lignes suivantes, par quel ensemble, parmi \mathbb{N} , \mathbb{Z} et \mathbb{R} , on peut compléter les points de suspension de façon à obtenir une affirmation juste. Justifier.

- 1. Soit x un élément de \cdots . Si x est supérieur ou égal à 3, alors x est strictement supérieur à 2.
- 2. Soit x un élément de \cdots . Si x est strictement supérieur à 2, alors x est supérieur ou égal à 3.
- 3. Soit x un élément de \cdots . Si x est supérieur ou égal à 3, alors x^2 est supérieur ou égal à 9.

- **4.** Soit x un élément de \cdots . Si x^2 est supérieur ou égal à 9, alors x est supérieur ou égal à 3.
- **5.** Soient x et y des éléments de \cdots . Si x+y=0, alors x=y=0.

Exercice 3 Justifier soigneusement chacune de vos réponses.

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle.

- 1. On suppose $u_0 = 0,333$ et $u_1 = \frac{1}{3}$.
 - **a.** Peut-on affirmer que la suite $(u_n)_{n\in\mathbb{N}}$ est croissante?
 - **b.** Peut-on affirmer qu'elle n'est pas décroissante?
- **2.** On suppose maintenant que $(u_n)_{n\in\mathbb{N}}$ est strictement croissante. Peut-on affirmer que l'on a $\lim_{n\longrightarrow +\infty}u_n=+\infty$?
- **3.** On suppose enfin $\lim_{n \to +\infty} u_n = +\infty$. Peut-on affirmer que $(u_n)_{n,\in\mathbb{N}}$ est croissante?

Exercice 4 Soit f une fonction définie sur l'intervalle $[0, +\infty[$, à valeurs réelles.

- 1. On suppose $f\left(\frac{7}{3}\right) < f(3\sqrt{2})$.
 - a. Peut-on affirmer que f est strictement croissante sur l'intervalle $[0, +\infty[$?
 - **b.** Peut-on affirmer que f n'est pas décroissante sur l'intervalle $[0, +\infty[$?
- 2. On suppose maintenant que la fonction f est telle que la proposition suivante soit vraie :

Quels que soient les entiers naturels
$$x$$
 et y , si $x < y$, alors $f(x) < f(y)$.

Peut-on affirmer que f est strictement croissante sur l'intervalle $[0, +\infty[$?

3. On suppose pour finir que la fonction f est telle que la proposition suivante soit vraie:

Quel que soit
$$x \in [0, +\infty[$$
, on a $f(x) < f(x+1)$.

Peut-on affirmer que f est strictement croissante sur l'intervalle $[0, +\infty[$?

Exercice 5

- 1. J'achète 2 articles dans une grande surface et paye le tout 1 €10. Le plus cher des deux coûte un euro de plus que l'autre. Quel est le prix de l'article le moins cher?
- **2.** Résoudre dans \mathbb{R} les équations suivantes.

a.
$$3\frac{5x-2}{5} = 6x$$
,

b.
$$3\left(\sqrt{8}x - \frac{26}{9}\right) = 6\sqrt{2}x - \frac{13}{\frac{3}{2}},$$

c.
$$x^3 = 2x$$
,

d.
$$\frac{x^2 + 2x}{3x^2 - x} = 1.$$